tengi

Regenerative medicine Scaffolding in Regenerative Wedicine

- an industrial viewpoint

CIRM / RMC Webinar September 12, 2011

Deepak Jain, PhD SVP, Bioprocess Research & Development Tengion Inc.

Scaffolding in Regenerative Medicine

- an industrial viewpoint

Synopsis

- Overview on Scaffolds in Regenerative Medicine
- Designing Scaffolds
- Scaffolds Applications to Neo Organs
 - Urinary system organs
 - Gl organs
- Issues and Challenges
 - Product development
 - Regulatory

Scaffolding in Regenerative Medicine Overview

Regenerative medicine is a rapidly evolving interdisciplinary field in health care that translates fundamental knowledge in biology, chemistry and physics into materials, devices, systems and therapeutic strategies, including cell-based therapies, which augment, repair, replace or regenerate organs and tissues.*

Regenerative medicine is the "process of replacing or regenerating human cells, tissues or organs to restore or establish normal function"**.

Regenerative medicine products typically are composed of cells and/or biomaterials. Cells provide biological cues in cell therapy products. Biomaterials (scaffolding) are used to provide structural and functional cues in tissue engineering applications. Cells and biomaterials provide a combination of biology and structure in the regeneration of tissues or organs.

Scaffolding in Regenerative Medicine Current Paradigm

Types of Biomaterials

- Natural
- Synthetic

- Biodegradable
- Permanent
- Implantable solid, shape and structure
- Injectable fluid, gel

Scaffolding in Regenerative Medicine Natural Scaffolds

Natural Materials

- Proteins such as collagen or fibrin
- Polysaccharides like chitosan, alginate
- Glycosaminoglycans like hyaluronic acid, possibly in combination with cross linking agents
- Decellularized tissue like SIS

- Availability
- Removing undesirable biological contaminants
- Lot-to lot variation Quality Control
- Decellularization, crosslinking alteration of native properties
- Immunogenicity

Scaffolding in Regenerative Medicine **Natural Scaffolds**

Table 1: Commercially available extracellular matrix (ECM) scaffolds

Product	Source	Tissue	Company	
AlloDerm	human	skin	Lifecell	
AlloPatch	human	dermis	Musculoskeletal Transplant Foundation	
Avaulta®, CollaMend®	porcine	dermis	BARD	
Axis™ dermis	human	dermis	Mentor	
CuffPatch™	porcine	SIS	Athrotek	
Graft Jacket®	human	skin	Wright Medical Tech	
Oasis®	porcine	SIS	Healthpoint	
OrthADAPT™, DurADAPT™	equine	pericardium	Pegasus Biologicals	
Permacol™	porcine	skin	Tissue Science Laboratories	
Restore™	porcine	SIS	DePuy	
Surgisis®, Durasis®, Stratasis®	porcine	SIS	Cook SIS	
Suspend™	human	Fascia lata	Mentor	
TissueMend®, Durepair®, Xenform™, SurgiMend™, PriMatrix™	Fetal bovine	skin	TEI Biosciences	
Veritas®, Dura-Guard®, Vascu-Guard®, Peri-Guard®	bovine	dermis	Synovis Surgical	
Xelma™	porcine	Teeth enamel	Molnlycke	

Scaffolding in Regenerative Medicine Synthetic Scaffolds

Synthetic Degradable Materials

- Polylactic acid (PLA) degrades within the human body to form lactic acid
- Polyglycolic acid (PGA) degradation mechanism is similar to that of PLA, but a faster rate of degradation
- Polycaprolactone (PCL) degradation mechanism is similar to that of PLA, but a slower rate of degradation

- Biocompatibility issues
- Immunogenicity
- Resorption rates
- Degradation issues toxic compounds, consistency,
- Manufacturing contaminants
- Environmental effects

Application in Regenerative Medicine Current Marketed Products

Product	Application	Company	Approval	
Integra Template - silicone and bovine collagen + GAGs	Treatment of either a burn or scar contracture	Integra Life Sciences	1996	
Carticel - autologous cultured chondrocytes	Repair of clinically significant, symptomatic cartilaginous defects of the femoral condyle	Genzyme Tissue Repair	1997	(Columb
Transcyte - silicone with killed fibroblast	Temporary wound covering for full and partial thickness burns wounds	ATS/S&N	1997	
Apligraf - bio-engineered cell based product	Treatment of venous leg ulcers and diabetic foot ulcers	Organogenesis	1998	
Dermagraft - fibroblasts, placed on a dissolvable mesh	Wound closure of diabetic foot ulcers	ATS/S&N Now: Advanced BioHealing	2001	OF .
Infuse - rhBMP-2 along with a carrier/ scaffold	Bone growth in specific, targeted areas of the spine	Medtronic Sofamor Danek	2002	No.
GEM 21S - growth factor enhanced matrix	Treatment of patients who have bone defects due to periodontal disease	Biomimetics Pharmaceuticals Incorporated	2006	an an

Scaffolding in Regenerative Medicine Biomaterial Requirements

Role of Biomaterials

- Shelf Life extended shelf life for ABI
- Stability durability during transport
- Safety predictable and persistent targeted delivery of cells
- Support material for cell attachment
- Structure architecture for cell interactions
- Space displacement of tissue

- Targeting delivery without compromising distribution of active ingredients (cells)
- Providing structure without compromising compatibility

Scaffolding in Regenerative Medicine Biomaterials: design criteria and selection

Key Criteria for Biomaterial Selection:

- Biocompatible
 - Minimal Inflammatory response
 - Minimal fibrotic response
 - Facilitate neo-vascularization
- Bioresorbable

Screen formulated candidates:

- In vitro
- In vivo

Cell-biomaterial formulations optimized in combinatorial screening platform

- Finding approved biomaterials that meet design criteria
- Regulatory hurdles in using new biomaterials

Building Neo-Organs and Neo-Tissues Key Components

A platform that catalyzes human tissue and organ regeneration

Technology Platform Yields Unique Products Neo-Organs

Cell Source

Progenitor cell(s)

Various cells and sources used

Biomaterial Synthetic or Natural

Products

Neo-Bladder Augment

Neo-Urinary Conduit

Neo-Bladder Replacement

Neo-Vessel

Neo-Kidney Augment

Neo-GI

Regenerating Urinary System Organs Neo-Bladder Augment (NBA)

Surgeon sends patient's biopsy to Tengion.

Surgeon implants the neoorgan which regenerates and becomes functional.

Neo-Bladder Augment Biomaterials: scaffolds

The NBA scaffold is made up of the following:

- Polyglycolic acid (PGA) polymer mesh fashioned into a bladder shape
- Formed scaffold coated with 50:50 poly-DLlactide-co-glycolide (PLGA) copolymer

The NBA scaffold is seeded with autologous smooth muscle cells and urothelial cells to form the NBA construct for implantation

- Preventing hydrolytic degradation of PGA during manufacturing
- Matching degradation rate of PGA scaffolds with tissue regeneration in vivo
- Localized toxicity of degradation product (lactic acid)

Augmentation to Organ Replacement Neo-Bladder Replacement (NBR)

Precursor Cells

PGA Scaffold

Seeded Construct

Surgical Implantation

In-situ "neo-bladder" Regeneration

Neo-Bladder

Bladder Cancer Management Urinary diversion procedures

When bladder removal is needed, a urinary diversion procedure is performed...

Orthotopic Neo-bladder (1,600 annually in the US & EU)

- Native bladder removed
- Section of bowel isolated, with blood supply maintained
- Bowel continuity re-established without the removed segment
- Isolated bowel segment fashioned into a pouch
- Ureters connected to the bowel segment, which is connected to urethra

Non-continent Urinary Diversion Conduit (20,000 annually in the US & EU)

- Native bladder removed
- Section of bowel isolated, with blood supply maintained
- Bowel continuity re-established without the removed segment
- Ureters connected to the bowel segment, which is connected to abdominal wall for ostomy bag drainage

Neo-Urinary Conduit

Bladder Cancer Management - without Bowel Resection

Isolation / Expansion

Scaffold

Seeding / Growth

Implantation

Functional Regeneration

- Cells and construct catalyze new tissue growth
- Blood vessels and nerves grow into the neo-organ
- Scaffold is absorbed

Neo-Urinary Conduit Biomaterials: scaffolds

The NUC scaffold is made up of the following:

- Polyglycolic acid (PGA) polymer mesh fashioned into a tubular shape
- Formed PGA tube coated with 50:50 poly-DL-lactide-co-glycolide (PLGA) copolymer

The NUC scaffold is seeded with autologous smooth muscle cells sourced from adipose tissue to form the NUC construct for implantation

- Preventing hydrolytic degradation of PGA during manufacturing
- Maintaining compressive strength PGA tubular scaffolds with tissue regeneration in vivo
- Surgical technique

Neo-Urinary Conduit Bioreactor/Construct Manufacturing

Bioreactor:

- Design input from clinical and regulatory
- Biocompatible product contact materials
 - USP Class VI grade polycarbonate
- Provide an environment for cell seeding, SMC growth and construct maturation
- Closed system for aseptic manufacturing
- Maintain integrity during transport (air and ground)
- User-friendly handling of the NUC at the surgical site

Construct:

- Cells are harvested and seeded on scaffold in bioreactor
- Cell-seeded scaffold is matured into a NUC construct in the bioreactor

- Biocompatible clinical-grade materials
- Designing a aseptically sealed bioreactor that can be easily opened in the OR
- Maintaining multiple quality systems for devices and biologics

Neo-Urinary Conduit Product Characterization

Cells

- Morphology
- Phenotype
- Gene expression
- Ability to contract

Biomaterial/Scaffold

- Physical dimensions
- Pore size
- Degradation rate
- Tensile strength/compressive strength
- Biocompatibility

Construct

- Cell Phenotype
- Metabolic Activity
- Cell Function
- Secretome Profile
- ECM Production

Challenge:

Characterization vs Release testing

Regulatory Pathway - Combination Product

Neo-Urinary Conduit: Bladder cancer patients requiring bladder removal

- BLA with CBER in the lead and CDRH collaborating
- Pre-IND discussions in advance of GLP studies
- IND accepted in 30 days
- Neo-Bladder Augment experience in US and Europe was instructive for conduit

Key Steps in IND Development of NUC:

CMC

- Cells
 - Isolation, Characterization and Expansion (ICE) process
- Biomaterials
 - Formation, Strength and Integrity of tubular structure
- Bioreactor
 - Closed system bioreactor and user friendly design
- Construct
 - Closed seeding, cell attachment and environment
- Transport and Delivery System
 - Construct integrity during transport
 - Surgeon-friendly at clinical site
- Stability
 - Optimum shelf life and stability of product
- Characterization & Release Criteria
 - Cell, biomaterial and construct characterization assays and validated methods
 - Defined release criteria

Preclinical

- Pre-GLP studies
- GLP studies

- Release testing of lot of one (autologous)
- Defining potency of regenerative medicine products
- Non-diseased animal models

Neo-Kidney Augment (NKA) - to delay the need for dialysis or transplantation

100,000 new dialysis patients each year in the US

- 350,000 currently on dialysis
- 20% annual mortality
- \$60,000 1st year cost per patient
- \$22 billion in direct US costs annually for end stage kidney disease

Neo-Kidney Augment Biomaterials: product formulations

Renal Cell - Biomaterial Formulations

Cell-biomaterial formulations optimized in combinatorial screening platform

- Targeting delivery without compromising distribution of active ingredient (cells)
- Providing formulations without compromising compatibility

Regulatory Pathway - Combination Product

Neo-Kidney Augment: Chronic kidney disease

- Early FDA interactions
- Combination product development pathway
- Discussions in advance of Pre-IND submission
- Use previous development experience

- Release testing of lot of one (autologous)
- Defining potency of NKA
- Non-diseased large animal models

Regenerating GI System Organs Neo-GI Esophagus

Esophageal patch: Coated PLGA mesh seeded with Ad-SMC

SI patch: Woven PLGA mesh seeded with Ad-SMC

Neo-GI: Small Intestine

- Tubular Scaffolds

SI Tube: Coated PLGA mesh

SI Tube: PCL Foam-Mesh

SI Tube: PCL Electrospun

Scaffolding in Regenerative Medicine

- Summary

Scaffolding in Regenerative Medicine

- Biomaterials are a key element in the development of Regenerative Medicine Products
- Scaffolds have been shown to be effective in creating Neoorgans and Neo-tissues

Key Issues and Challenges

- Biomaterials/Scaffold Selection
- Manufacturing Scaffolds
- Regulatory issues

tengi

Regenerative medicine brought to life.